DISCRETE SEMICONDUCTORS

DATA SHEET

PEMH13; **PUMH13** NPN/NPN resistor-equipped transistors; R1 = 4.7 kΩ, R2 = 47 kΩ

Product data sheet Supersedes data of 2003 Nov 07 2004 Apr 14

NPN/NPN resistor-equipped transistors; R1 = 4.7 k Ω , R2 = 47 k Ω

PEMH13; PUMH13

FEATURES

- Built-in bias resistors
- · Simplifies circuit design
- · Reduces component count
- · Reduces pick and place costs.

APPLICATIONS

- · Low current peripheral driver
- Replacement of general purpose transistors in digital applications
- . Control of IC inputs.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	TYP.	MAX.	UNIT
V _{CEO}	collector-emitter voltage	_	50	V
Io	output current (DC)	_	100	mA
TR1	NPN	_	_	_
TR2	NPN	_	_	_
R1	bias resistor	4.7	_	kΩ
R2	bias resistor	47	=	kΩ

DESCRIPTION

NPN/NPN resistor-equipped transistors (see "Simplified outline, symbol and pinning" for package details).

PRODUCT OVERVIEW

TYPE NUMBER	PACK	AGE	MARKING CODE	PNP/PNP	NPN/PNP
TIFE NOWIBER	PHILIPS	EIAJ	WARKING CODE	COMPLEMENT	COMPLEMENT
PEMH13	SOT666	-	21	PEMB13	PEMD13
PUMH13	SOT363	SC-88	H0* ⁽¹⁾	PUMB13	PUMD13

Note

- * = p: Made in Hong Kong.
 - * = t: Made in Malaysia.
 - * = W: Made in China.

SIMPLIFIED OUTLINE, SYMBOL AND PINNING

TYPE NUMBER	SIMPLIFIED OUTLINE AND SYMBOL		PINNING		
TIPE NOWIBER	SIMPLIFIED OUTLINE AND STMBOL	PIN	DESCRIPTION		
PEMH13	6 5 4	1	emitter TR1		
PUMH13		2	base TR1		
	R1 R2	3	collector TR2		
	TR2	4	emitter TR2		
	TR1 R2 R1	5	base TR2		
		6	collector TR1		
	1 2 3				
	· wncoou				

2004 Apr 14 2

NPN/NPN resistor-equipped transistors; R1 = 4.7 k Ω , R2 = 47 k Ω

PEMH13; PUMH13

ORDERING INFORMATION

TYPE NUMBER		PACKAGE				
NAME		DESCRIPTION	VERSION			
PEMH13	 plastic surface mounted package; 6 leads 		SOT666			
PUMH13	 plastic surface mounted package; 6 leads 		SOT363			

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
Per transis	tor			-	-
V_{CBO}	collector-base voltage	open emitter	_	50	V
V _{CEO}	collector-emitter voltage	open base	_	50	V
V _{EBO}	emitter-base voltage	open collector	_	10	V
Vı	input voltage positive		_	+30	V
	negative		_	- 5	V
I _O	output current (DC)		_	100	mA
I _{CM}	peak collector current		_	100	mA
P _{tot}	total power dissipation	T _{amb} ≤ 25 °C			
	SOT363	note 1	_	200	mW
	SOT666	notes 1 and 2	_	200	mW
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature		_	150	°C
T _{amb}	operating ambient temperature		-65	+150	°C
Per device					
P _{tot}	total power dissipation	T _{amb} ≤ 25 °C			
	SOT363	note 1	_	300	mW
	SOT666	notes 1 and 2	_	300	mW

3

Notes

- 1. Device mounted on an FR4 printed-circuit board, single-sided copper, standard footprint.
- 2. Reflow soldering is the only recommended soldering method.

2004 Apr 14

NPN/NPN resistor-equipped transistors; R1 = 4.7 k Ω , R2 = 47 k Ω

PEMH13; PUMH13

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
Per transis	tor			
R _{th(j-a)}	thermal resistance from junction to ambient	T _{amb} ≤ 25 °C		
	SOT363	note 1	625	K/W
	SOT666	notes 1 and 2	625	K/W
Per device				
R _{th(j-a)} thermal resistance from junction to ambient		T _{amb} ≤ 25 °C		
	SOT363	note 1	416	K/W
	SOT666	notes 1 and 2	416	K/W

Notes

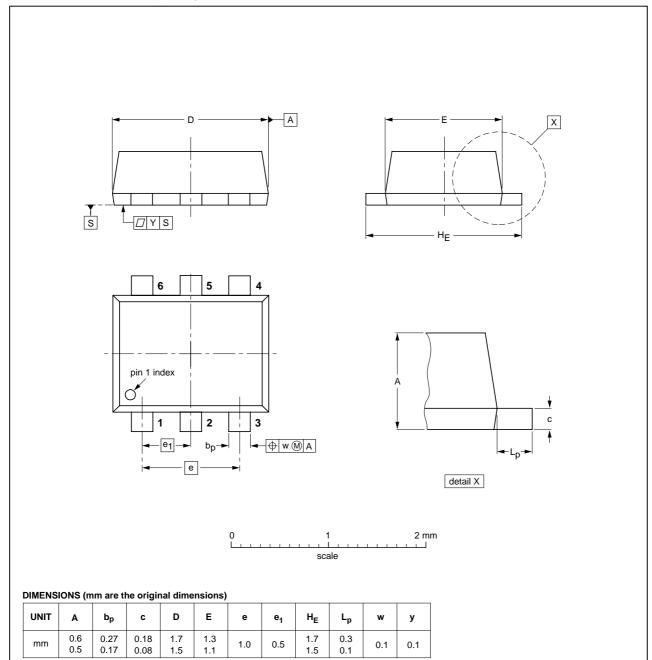
- 1. Device mounted on an FR4 printed-circuit board, single-sided copper, standard footprint.
- 2. Reflow soldering is the only recommended soldering method.

CHARACTERISTICS

 T_{amb} = 25 °C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT		
Per transis	Per transistor							
I _{CBO}	collector-base cut-off current	V _{CB} = 50 V; I _E = 0 A	_	_	100	nA		
I _{CEO}	collector-emitter cut-off current	V _{CE} = 30 V; I _B = 0 A	_	_	1	μΑ		
		$V_{CE} = 30 \text{ V}; I_{B} = 0 \text{ A}; T_{j} = 150 ^{\circ}\text{C}$	_	_	50	μΑ		
I _{EBO}	emitter-base cut-off current	$V_{EB} = 5 \text{ V}; I_{C} = 0 \text{ A}$	_	_	170	μΑ		
h _{FE}	DC current gain	$V_{CE} = 5 \text{ V}; I_{C} = 10 \text{ mA}$	100	_	_			
V _{CEsat}	collector-emitter saturation voltage	$I_C = 5 \text{ mA}; I_B = 0.25 \text{ mA}$	_	_	100	mV		
$V_{i(off)}$	input-off voltage	$V_{CE} = 5 \text{ V}; I_{C} = 100 \mu\text{A}$	_	0.6	0.5	V		
$V_{i(on)}$	input-on voltage	$V_{CE} = 0.3 \text{ V}; I_{C} = 5 \text{ mA}$	1.3	0.9	_	V		
R1	input resistor		3.3	4.7	6.1	kΩ		
<u>R2</u> R1	resistor ratio		8	10	12			
C _c	collector capacitance	$V_{CB} = 10 \text{ V}; I_E = i_e = 0 \text{ A};$ f = 1 MHz	-	_	2.5	pF		

2004 Apr 14 4


NPN/NPN resistor-equipped transistors; R1 = 4.7 k Ω , R2 = 47 k Ω

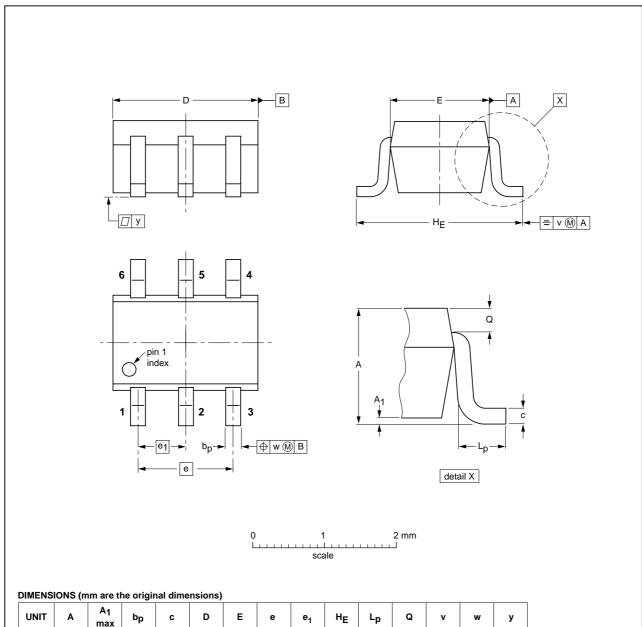
PEMH13; PUMH13

PACKAGE OUTLINES

Plastic surface-mounted package; 6 leads

SOT666

OUTLINE		REFER	ENCES	EUROPEAN ISSUE DATE		
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE	
SOT666					-04-11-08 06-03-16	


2004 Apr 14 5

NPN/NPN resistor-equipped transistors; R1 = 4.7 k Ω , R2 = 47 k Ω

PEMH13; PUMH13

Plastic surface-mounted package; 6 leads

SOT363

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT363			SC-88			-04-11-08

0.65

0.45

0.15

0.25

0.2

0.2

0.1

2004 Apr 14 6

0.25

0.10

1.35

1.3

1.1

0.1

mm

NPN/NPN resistor-equipped transistors; R1 = 4.7 k Ω , R2 = 47 k Ω

PEMH13; PUMH13

DATA SHEET STATUS

DOCUMENT STATUS ⁽¹⁾	PRODUCT STATUS ⁽²⁾	DEFINITION
Objective data sheet	Development	This document contains data from the objective specification for product development.
Preliminary data sheet	Qualification	This document contains data from the preliminary specification.
Product data sheet	Production	This document contains the product specification.

Notes

- 1. Please consult the most recently issued document before initiating or completing a design.
- 2. The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

DISCLAIMERS

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions

above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

NXP Semiconductors

Customer notification

This data sheet was changed to reflect the new company name NXP Semiconductors, including new legal definitions and disclaimers. No changes were made to the technical content, except for package outline drawings which were updated to the latest version.

Contact information

For additional information please visit: http://www.nxp.com
For sales offices addresses send e-mail to: salesaddresses@nxp.com

© NXP B.V. 2009

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands R75/03/pp8 Date of release: 2004 Apr 14 Document order number: 9397 750 13092

